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A wormhole can be made to function as a time machine. In the context of the 
quantum billiard problem in the presence of a wormhole we examine whether this 
is compatible with the self consistency of physics. We derive a self-consistency 
condition in which the classical limit corresponds to known results for the 
(classical) billiard problem in a wormhole space-time and that suggests that some 
fine-tuning of initial conditions might be necessary. 

1. I N T R O D U C T I O N  

Consider a fiat space-time in which two regions (mouth A and mouth 
B of  Fig. 1) are connected by a throat (a wormhole) and assume that the 
intrinsic length of this wormhole is small compared to the distance between 
mouth A and mouth B in the external, flat space-time. It can be shown that 
this geometry can lead to the existence of  closed timelike curves either by, 
at some period of  time, accelerating one mouth of the wormhole relative to 
the other or by placing the mouths in regions of  differing gravitational 
potentials (Echeverria et al., 1991; Morris et  al., 1988; Kim and Thorne, 
1991, Friedman et al., 1990). An observer on a closed timelike curve can 
influence not only his own future but also his past; the wormhole thus can 
be made to function as a time machine. It is this time machine effect that 
we shall investigate in the following. We will leave out of  consideration the 
specifics of  the wormhole and only  discuss the question of  whether the 
existence of  closed timelike curves can be accommodated within a self- 
consistent physics. 

Now consider the classical  billiard problem in the presence of  a worm- 
hole in (for simplicity) an otherwise fiat space-time. A ball is incident upon 
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Fig. 1. The setting of the classical billiard ball problem in a wormhole space-time; the particle 
moves through the wormhole and backward in time, hitting itself in the past, but still reaching 
the mouth in accordance with the principle of self-consistency. 

the one mouth, A, of  the wormhole, goes through the wormhole, and thereby 
gets shifted backward in time giving the possibility that the ball hits itself 
so hard that it no longer reaches mouth A. But if it does not reach the mouth, 
it does not come out of mouth B and therefore does not hit itself and therefore 
reaches mouth A . . .  (the hen and the egg problem). One then proceeds to 
invoke the principle of self-consistency (Echeverria et  aI., 1991; Novikov, 
1989; Morris et al., 1988; Kim and Thorne, 1991; Friedman et  al., 1990; 
Lossev and Novikov, 1991); the time-shifted ball is only allowed to hit itself 
a little bit, such that it still reaches the hole, but on a slightly different path, 
which in turn is the reason that it only hits itself a little bit, thus rendering 
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the motion self-consistent, i.e., the ball is allowed to travel on a closed 
timelike curve (a CTC) only if the associated motion is self-consistent. 

A study of the self-consistency of the quantum mechanical behavior in 
a space-time with a wormhole is pursued using the simple model of wave 
packets whose size are small compared to that of the wormhole mouth. Thus 
we can ignore the possibility that only part of the wave packet enters the 
wormhole, and we can neglect scattering of the wave packet off the wormhole 
mouths. The wormhole itself will thus have very little effect on the wave 
packet, besides moving it to a different point in space-time. We assume that 
the wormhole is doubling as a time machine thus making it possible for the 
incoming wave packet to scatter on its own, time-shifted "self." As the wave 
packet, and thus the corresponding field, are self-interacting, self-consistency 
is not a priori fulfilled. The question of self-consistency is pursued by 
investigating the scattering of the incoming wave packet upon (the potential 
derived by) its time-shifted "self." The requirement that the physics of the 
system be self-consistent leads to a closed equation which the wave packets 
have to satisfy. Requiring these solutions to be stable further constrains the 
form of the incoming wave packet, i.e., the initial conditions. 

This is the obvious way of generalizing this classical treatment to a 
quantum mechanical one, but unfortunately it is not without problems. A 
space-time possessing closed timelike curves is not foliable, and hence we 
cannot, in the vicinity of the wormhole, make the 3 + 1 splitting of space- 
time essential to Schrrdinger mechanics. This problem can be overcome 
when, instead of including the wormhole directly, we include it only in an 
effective theory which is such that we do not have to use Schrrdinger theory 
near the wormhole but only sufficiently far away from it where we empirically 
know ordinary quantum theory to be correct. In this effective theory, the 
possibility of going through the wormhole and backward in time gives rise 
to an interaction which looks much like an ordinary self-energy diagram. 
Away from the wormhole, Schrrdinger mechanics must be valid, but we 
have to take the self-interactions introduced by the presence of a time machine 
into account. 

The Hamiltonian chosen to parametrize the time machine function of 
the wormhole as mentioned is (almost) the simplest possible: One that destroys 
the particle/wave when it enters the (given region surrounding) one wormhole 
mouth and created at some earlier time, i,e., when it exits (the region sur- 
rounding) the other wormhole mouth. One cannot a priori assume that such 
a simple Hamiltonian would yield a physical theory, so in order to examine 
this point we argue in Section 2.1 that this effective theory describing the 
wormhole action is mathematically equivalent to the nonlinear Schrrdinger 
equation. 
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Other approaches to the problem of creating a quantum mechanics valid 
in the presence of a wormhole have been suggested by various authors--their 
program is of course much more ambitious than ours in that they try to create 
a full-fledged quantum theory, while we are content with having an effective 
theory. It has been suggested by Klinkhammer and Thorne (n.d.) that a path- 
integral formulation was still possible, and this approach has been applied 
by several authors (Friedman et al., 1992; Boulware, 1992; Politzer, 1992; 
Hartle, 1993). Another method has been developed by Deutsch (1991); he 
finds that the pathologies present in a classical treatment are absent or at 
least mitigated in a quantum mechanical treatment. While closed timelike 
curves restrict the initial data in a classical setup, he finds that this is not so 
when the analysis is carried out quantum mechanically. Contrary to this, we 
find that self-consistency imposes restrictions on the initial data in a quantum 
description--especially when we also impose a restriction on the form of 
the wave packets. It should be noted, though, that self-consistency equation 
is so complicated that we do not know to what extent it restricts the initial 
conditions in the general case (the case where there is no restriction on the 
form of the wave packet traveling on the CTC). The other authors find that 
a free particle theory is consistent, but that interaction leads to nonunitarity 
(Deutsch also finds a loss of unitarity); a functional integration approach is, 
however, still possible. The model of self-interacting fields in a wormhole 
space-time put forward in this paper also leads to nonunitarity, but our 
treatment of the model avoids this problem (or rather: it is hardly visible in 
the way we apply our formalism to the quantum billiard problem), but in 
light of our findings, we should probably expect that the path integration 
measure would have to be nontrivial in order to impose self-consistency. 

It has been suggested by Kim and Thorne ( 1991) and Lossev and Novikov 
(1991) that the problems in the treatment of the classical billiard problem 
could be solved by using a quantum mechanical treatment. To investigate 
the relationship with the classical billiard problem, a Gaussian wave packet 
is substituted for the balls. It is shown that self-consistency is exceedingly 
difficult to obtain, so in this case the principle of self-consistency really 
amounts to a fine tuning of initial parameters, which basically is also, in a 
somewhat milder version, the classical result. 

To keep things so simple that an analytical solution to the problem is 
possible we will assume that the only effect of the wormhole on the wave 
packet, besides moving it to a different place in space-time, is the possibility 
of a shift in momentum. The diverging lens effect of the wormhole (Kim 
and Thorne, 1991) will be ignored, as will the scattering of the wave upon 
the wormhole mouths. We emphasize that we are not studying the scattering 
of a wave packet off a wormhole mouth (considered as a perturbation of flat 
space-time), we are only interested in the possibility or impossibility of self- 
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consistent motion. Therefore we think that this crude model of the wormhole's 
interaction with its surroundings should suffice. Any quantum mechanical 
model taking the wormhole (and the resulting absence of a foliation) into 
consideration, e.g., the path-integration approach, has to be equivalent to the 
Schrtidinger theory sufficiently far away, where space-time is supposed to 
be flat. Hence sufficiently far away, any model has to be equivalent to 
ours, although perhaps with a different scattering kernel. If not, the mere 
applicability of SchrOdinger quantum theory today would exclude the exis- 
tence, anywhere in the universe, of regions with closed timelike curves. 

In Section 2 we examine what it takes to fulfill the self-consistency 
requirement in the case of a nonrelativistic theory with Coulomb interactions. 
Thus we will have an incoming Gaussian wave at "infinity" moving toward 
mouth A, into it, and emerging from mouth B some time in the past, the time 
step being such that it scatters upon itself as it is on its way from infinity to 
mouth A (all of this happening in a flat space-time). To have self-consistency 
the scattering of the incoming wave upon its future (time-shifted) "self '  
should have constant amplitude if one chose to iterate the above process (as 
was the case in the classical billiard problem). This is the self-consistency 
requirement. 

In Section 3 we examine what it takes for a given solution to the self- 
consistency equation to be stable against small perturbations. By analogy 
with the classical billiard problem discussed above, this is done to suggest 
the degree of fine tuning necessary to ensure that the balls do not hit each 
other so hard that the incoming ball does not reach the wormhole. 

2. THE SELF-CONSISTENCY REQUIREMENT FOR A 
NONRELATIVISTIC FIELD WITH COULOMB 
INTERACTIONS IN 2+1 DIMENSIONS 

From nonrelativistic quantum mechanics, we know that wave packet Oi 
can undergo a transition ~,. ---) ~f in the presence of a perturbation. To first 
order, perturbation theory gives 

q,z(k') = I ~k'Vkk-----L--'-- ~k q~,(k) dn~ (1) 

where Vkk' = (k'l VI k) is the matrix element of the perturbation, n denotes 
the number of spatial dimensions, and ek is the energy, ek = kZ/2m. We will 
choose units in which m = 1. 

The case of the quantum billiard problem is quite special: The potential 
in which ~i scatters is derived from its future "self," ~f [which gives rise to 
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a charge distribution p(x, t) = I~/(x,/)12], i.e., V = V[+f]. We will choose 
a potential of  the form 

V(r) = ot'p(x, t)r ~-t = a '  I@f(x, t))12r ' - I  ~- v(r)lt~f(x, 012 (2) 

where • is taken to be small. One must either choose this prescription for 
an almost Coulomb potential or screen the Coulomb potential in order to 
obtain a finite theory. Some comments on the case of  the screened potential 
(the Yukawa potential) will be made at the end of  this section. 

Denoting the Fourier coefficients of  the original state by ak and those 
of the scattered state (that which goes through the wormhole and scatters its 
former "self") by Ck, 

-- [ I ake-ik'x d ' x  t~i(x) (2.rr)./2 

1 f Cke_ik. x dn x 
% ( x )  - ( 2 ~ ) . / 2  

we obtain upon insertion in equation (1), by using the Fourier convolution 
theorem (a tilde denotes Fourier transform) 

J~(k) = i f *  g)(k) = f f(p)g(k - p) d"p 

twice and changing variables a couple of times, 

= ct' ( a k k' - • k' - •k  c ~ ' c q - i I I k  - qll ~-2 d"q d'l  d"k (3) c k , 

f .~* ~'p,q,~ 
t.p~,, k' ~q driP d'q (4)  

where we have introduced a scattering kernel 

"~kP;q -- [ akg(i) d'k d ' l  (5) 
Ek, - -  F . k+ l+p+  q 

f akv(I) d'k  d"l (6) 
= 2 (k') 2 - ( k + l + p + q ) z  

where 17(k) = a'[[k[[ "-2 is the Fourier transform of v(r) = et'r ~-I and where 
I 2 we have inserted •k = y k .  

The following procedure will give us the self-consistent solutions: 

• Choose an initial wave function t~i, denote its Fourier coefficients 
by ak. 
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• Calculate the scattering kernel xP:q from ak. 
• Solve the (infinite) set of quadratic equations (self-consistency 

relations) 

f f.* ~'P,qr- Ck" = ~p ,L k" ~a d~P d"q  

In a more general setup the kernel would also contain information about the 
structure and geometry of  the wormhole. Thus it is essentially this quantity 
which hides our ignorance of the detailed structure of the wormhole. 

2.1. On the Consistency and Limitations of this Formalism 

Now, as mentioned in the introduction, space-times with closed timelike 
curves do not admit a foliation, and hence ordinary quantum mechanics is 
in principle meaningless. Thus, some comments on the consistency of the 
proposed formalism are in order. First of all, we do not attempt to give a 
quantum description of the dynamics close to the wormhole mouths. Suffi- 
ciently far outside that region, where space-time is almost flat, foliations are 
possible, and ordinary quantum mechanics is known to be valid. But we are 
interested in interaction of this "forbidden region" with its surroundings, as 
we want the wave packet to traverse the wormhole. We then try to set up an 
ef fect ive  theory which can accommodate this. The "forbidden region" is 
considered as a kind of "black box" which interacts with the environment: 
particles can enter it, and it emits particles, too. This would be completely 
analogous to the situation of a quantum mechanical system interacting with 
a classical system, were it not for the added feature of special (temporal) 
correlations. A particle entering the region at time t is correlated with a 
particle exiting at the earlier time t - T, where T is the typical time step of 
the wormhole. If the original wave packet is to interact with it, we can 
describe this in terms of an effective interaction V(r) = v(r) I +f(x, t) I z, where 
v(r) is the potential between two classical point particles and 10ft z is the 
(normalized) "charge" distribution. We can reexpress the potential in terms 
of the initial wave packet by writing I Of(x, t) 12 = W(X, t )  II~Ji(X , t)] 2, whereby 
the effective potential becomes V(x, t) = w(x, t) I ~/(x, t) 12. This holds provided 
we stay away from the at most countable number of zeros of +;, which thus 
form a set of measure zero. We notice, by the way, that the potential no 
longer a pr ior i  is radial, and will in general be time dependent, too. Simply 
plugging this into a SchrOdinger equation leads to the following effective 
equation of motion (dropping the subscript i on 4): 

---- 0 1 V2 ~ + w(x, t) tOJ2+ = i~-~ ~ (7) 
2 
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which is a slight generalization of  the well-known nonlinear Schr6dinger 
equation (Taniuti and Yajima, 1969), the only new feature being the noncon- 
stant coefficient w(x, t). 

Giving up describing the dynamics inside the "forbidden region," we 
can essentially use ordinary SchrOdinger mechanics outside, but with an 
effective potential depending upon the wave function, thus leading to a 
generalization of the nonlinear Schr6dinger equation as the effective equation 
of motion)  Hence, as an effective theory, the proposed formalism should 
suffice. Thus, also, in principle, one could calculate all sorts of transition 
amplitudes using the scattering theory of this generalization of the nonlinear 
SchrOdinger equation. 

2.2. Gaussian Wave Packets in an Almost Coulomb Potential 

The simplest nontrivial spatial dimensionality is two and to make things 
simple we will restrict ourselves to that. We expect the results to change 
only slightly in n > 2, i.e., only small changes in numerical values and 
perhaps in the number of solutions are expected. The order of the Bessel 
function could change, and we would get a factor (k') "-2 in the final result. 

With a Gaussian wave packet as our initial wave function, parameter- 
ized as 

a k = e - a k 2 + b ' k + c  (8) 

we obtain after a lengthy and tedious but standard calculation 

, X 
2~q = 2eL"rr2B(~., 1 -- e) e-'~2÷c'Io(b'x) (k,2 _ x2)l_ ~ dx (9) 

where B(x, y) ---- F(x )F(y ) lF(x  + y) is the beta function, Io is a modified 
Bessel function, and the coefficients are 

b' - - l ib  - 2a(p - q)ll (10) 

c' = c -  a ( p +  q )2_  b - ( p +  q) (11) 

2One should note that the usual nonlinear Schr6dinger equation, i.e., the equation with w(x, t) 
= w0 = const, has a countable spectrum of soliton solutions. We would expect this slight 
generalization to behave similarly--one can consider it as a perturbation of the usual nonlinear 
Schr6dinger equation--and hence to have a countable spectrum of soliton solutions. We 
could furthermore allow the particle to go through the time machine a countable number of 
times--this would alter the potential in the nonlinear Schr6dinger equation to V. = w,,(x. 
t) I 012n. where n is the number of times it goes through; we see that the nonlinearity increases 
(not surprisingly) with the number of times the wormhole is traversed. This would be expected 
to yield a continuum of solutions which might be of use in a path-integration approach, 
probably allowing for a reduction of the Hilbert space of states. 
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Proceed from equation (6) by noting that the beta function B is singular in 
the limit ~ -o 0. This comes as no surprise, as this is the place where we 
put the infinities arising from the nature of  the Coulomb field. Imagining the 
beta function regularized by renormalization makes it plausible to put e - 
0 inside the integral and simply treat the beta function taken at e = 0 as a 
(finite) constant. Doing this, we can evaluate the above integral, obtaining 

)~pk~ = 2iod,rr3B(~, 1 - ~)e-'~(k'~2+C'lo(b'k ') (12) 

Note from equations (4) and (11) that Ck, will always go like a Gaussian 
times some function, i.e., 

Cp = f(p)e -~p2 (13) 

The self-consistency condition then reads (see Appendix for details) 

i0 o Ck' = 2"rr~e -~k'2 ~ bnbm (p2+ _ p2_)(n+m)/2 
I l l r l  

× Io(Ap_)e-~P--(a+~)P'~p+p_ dp+ dp_ (14) 

where we have defined 

A = 23/4,jak', ~ = 2i~'~r3B(e, I - e)e C (15) 

with p± = 2-i/2(p _+ q) and where b~ denotes the Taylor coefficients o f f ( p )  
= ~ bop". In general this integral is very difficult to carry out; we can, 
however, make a great simplification. To perform it we split the wave packet 
in two, one part containing only even powers of the momenta, i.e., b2t+~ = 
0, and the other part containing only odd powers, i.e., b21 = 0. The integrals 
can then be performed in each case (see Appendix for details) and we arrive at 

C k, = e-ak'2 ~ (bz.k '2" + b2n+l k '2n+l )  
r t  

= 2'rr2~e-ak'2 ~ b"nb2m2n+m ~ k l 2 "" 
,,,, ~ ~t (k + 1)!! 

× ~ ( n + m ~ k - l )  F ( ( n + m + 2 - 1 ' ) / 2 )  
l" ot(n +m ÷ 2-1")/2 

2 , 1; Ck+l+r +t 
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(:)(:) o/~ ~. on+m+ I 2k+l + ~U2n+lt"2m+l z" ~ l (k + I 1)!! 
kl (k + l)!! 

( - - / -  - n + m  I k l +  1 F ( ( n + m  + 3 l')/2) × 
l" ot(n+m+ 3-l')12 

2 , 1; G+t+r+l (16) 

where ~(a, b; z) is a degenerate hypergeometric function (Gradshteyn and 
Ryzhik, 1980) 

(a)~z ~ 
• (a, b; z) ------ ,,~--0 (b),,n! 

with (a)n = a(a + 1)(a + 2) ... (a + n - 1), and where we have introduced 

( 2 X - 1 ) ? ?  ( I1" / '/2 
2(-~a--+-ot)) h \a---~aJ ' v = 2h 

C,, -- h! (17) 

[~ -d  -~ ~ -  i v =  2h + 1 

We should notice that k' appears only through A 2 as  an argument of the 
degenerate hypergeometric function; it thus always appears raised to an even 
power. From this we conclude that only wave packets with b2n+t = 0 for n 
= 0, 1, 2 . . . .  can satisfy the self-consistency requirement. Note that this is 
an exact result; no approximations have been used. 

Equation (15) constitutes the final form of the self-consistency require- 
ment in the case of an incoming Gaussian wave packet possessing a Coulomb 
potential, and so it is this equation we have to solve to find self-consistent 
solutions. In general the self-consistency requirement can only be solved (in 
principle) in the two extreme cases f = const and f not a polynomial (i.e., 
the Taylor series never terminates, in which case f would be some analytic 
function of k'2) ;  due to the hypergeometric function on the right-hand side, 
the self-consistency equation has no solutions when f is a polynomial--i ts  
expansion will never terminate for the values of its arguments which appear 
in the self-consistency requirement. As an example of  the case where f is an 
analytical function, in the next section we consider the case where f is a 
pure Gaussian. 

Figure 2 shows the kernel as a function of p+ for fixed k'. Note the 
very smooth behavior of this function; this is what makes an analytical 
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Fig. 2. The scattering kernel for an incoming Gaussian in a power-law potential. (a) Surface 
plot of  ,~:,l as a function o f x  = liP - qll and y = lip + qll for fixed k' (a = 1, k' = 1). (b) 
Contour plot representation o f  (a). 

solution possible. Note also the very large range in which it takes its values- -  
this makes numerical simulations impractical. 

2.3. Pure Gaussian 

If the wave packet is a pure Gaussian, we get a requirement on the wave 
packet traversing the wormhole (remember that the ~t refers to Of, whereas 
the a refers to ~i). By putting Ck" = bo e x p ( - a k  '2) [cf. (12)] on the left-hand 
side and similarly on the right-hand side, where only one term in the sum 
would then appear, one immediately sees that 

b0 = b022'rr2~ (1 8) 
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i.e., b0 = (27r2~) - l  (or b0 = 0, but this would correspond to ~ = 0 and is 
hence not interesting). Also, by differentiating twice with respect to k' and 
putting k' = 0, one gets 

1 1 o~ = ~ a 4- ~ (a 2 + 2,,/~a),,2 (19) 

i.e., there are exactly two solutions for the scattered wave packet. 
This case, where the wave packet is Gaussian at all times (i.e., both 

before and after scattering), is the quantum analogue of the classical billiard 
problem (the Gaussian wave packets which are substituted for the billiard 
balls can be as localized as the Heisenberg uncertainty principle allows). 
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In the case where  the wave  packet  is required to be normal ized,  we 
fur thermore  get a requi rement  on the or ig ina l  wave  packet  (i.e., on a). But 
the number  o f  requirements  g rows  as two t imes the number  o f  terms in the 
Taylor  expans ion  o f f ( p ) ,  mak ing  this analysis  feasible  only  in the case o f  a 
pure Gaussian.  Normal iza t ion  of  the Gauss ian  wave  packet  would  require b0 
= (2o~/'rr) I/2, i.e., in order to have normal ized  wave  packets  we  would have 
to impose  the requirement  

cx = (8'rr3~ 2)- l = _ (64ia,n.Ta,2B2(e ' 1 - e ) ) - I  (20) 

where  we have inserted the definit ion of  ~ [see equat ion (14); also, r e m e m b e r  
that a '  is the coupl ing constant]  and demanded  that the original wave  packet  is 
normal ized  [i.e., e c = (2a/'rr)l/2]. This  then a l lows only one or ig ina l  G a u s s i a n ,  

namely  that with a sat isfying 3 

a 2 +_ a(a  2 + 2x/2a)  I/2 = -(32i'rrTot'2B2(e, 1 - e)) - I  (21) 

Thus  there are only two solutions; in units where  the r ight-hand side is equal 
to one, we find a = 0.5337543 when we use the plus sign and a = 1.4799995 
when we use the minus sign. 

Had  we chosen a Yukawa potential ,  V(r)  = a ' r - ~ e  -~/'n, instead we would  
have had to make  the substitution k '~ --~ k '2 + m 2 in all the express ions ,  and 
the coeff icients  would  b e c o m e  nonsingular  in the limit e ~ 0. Hence  (11) 
would b e c o m e  

X~'q ~ e-,*{k'2+,,,2)+C'lo(b'(k '2 + m2) 112) 

and the quanti ty A def ined in (14) would become  A = 23/4x/~(k'2 q- m2) 1/2. 
This would make  solutions in the general  case even more  difficult,  as the 
r ight-hand side o f  the se l f -consis tency requi rement  (15) now would  contain 
terms of  the fo rm (k '2 + m2) n/2, where  n is just  some  integer. This  in turn 
would  make  it useless to try the expans ion  

Cp = e -a{p2+m2) £ b,,p n 
¢t=0 

The Gauss ian  solution would still exist, though, but with b0 mult ipl ied by 
exp(am2).  Similarly,  the r ight-hand side of  (20) would  also change,  but can 
still be taken to unity by an appropr ia te  choice  of  m and a ' .  

3The factor i in equation (20) need not necessarily imply that a is complex, since the beta 
function B(e, I - e) strictly speaking diverges as • ~ 0 (this was the reason for not using a 
proper Coulomb interaction in the first place), and hence needs regularization. In this process 
it could most likely take on an imaginary value (it would be forced to be nonpositive at least). 
We simply assume that we can take the right-hand side of (20) to be unity. 
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2.4. Stability of Solutions 

In the preceding section we found solutions to the self-consistency 
requirement for pure Gaussians. By analogy with the classical billiard prob- 
lem, where one attempts to avoid the situation in which the scattering of the 
incoming ball on its future "self" makes the incoming ball fail to traverse 
the wormhole, we now want to investigate the stability of  these solutions 
under small perturbations. Write the self-consistency condition in symbolic 
form as 

C k, = xP;qcpcq (22) 

invoking a generalized summation convention consisting in integrating over 
repeated indices. We then consider a slight perturbation 3Ck of a fixed solution 
~k; tO first order in the perturbation we then get 

~C k, = -~P;q~p~Cq "~- ~'kP,q~q~Cp ~ /~/L'~CI (23) 

where 

M k, --=- x[:q(~pg~ + ~qg~,) (24) 

with g[, - g("~(k - i). 
To study the stability of the solution ~p we must consider the infinite- 

dimensional nonlinear map 

gc~;~ ~ gc~!+ l~ = AT/[cgc~) (25) 

The difference, A~,"), between two such iterates is then simply 

A~,~ = I(~/],, - gk,)gcl")l = I(Mk, - gk,)"gct°)l (26) 

This difference then goes like the size of the eigenvalue of,Q],, corresponding 
to k' .  Denoting this eigenvalue by h(k'),  we get 

A~) -- l(k(k ')  - 1)"1-I~c~°)l (27) 

i.e., it diverges when k(k ' )  > 2, in which case, then, the solution is unstable 
against slight perturbations. If, on the other hand, h(k ')  < 2, then the corres- 
ponding solution ~k is stable. In accordance with the language of chaos 
theory, we call h(k')  the generalized Lyapunov exponent. In the usual finite- 
dimensional case treated in chaos theory, this exponential is a function of  
the solution {, which in our infinite-dimensional analogue means that ~ is a 
functional of ~k. 

We have reduced the problem of stability to that of finding the eigenval- 
ues of the integral operator/f/k. 
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2.5. Stability of the Pure Gaussian 

Now we examine the pure Gaussian solution found in the previous 
section, 

~k = bo e-~2 (=  ck) (28) 

Inserting this into the definition of the operator M[,, we get, by construction, 
essentially the same integrals as those we performed in order to solve the 
self-consistency requirement. Explicitly, 

k(k) = (boe-"k2(f lo(kllp - lll)e-"~P+'12-~p2d2p + (p ---> q)))~mk (29) 

We can get, by ignoring the terms linear in p, q in the exponent, an approximate 
expression for these integrals, 

M k ) ~ 2 b e x p  - 2a + 8(a +~)~2 k2 I0 (a + ~ ) 2  (30) 

Inserting b0 = (~&)u2 and a = ½[a + (a 2 + 2av/2)1/2], we can plot this as 
a function of a and k. This is done in Fig. 3. We note the existence of  a 
stable (X < 2) as well as an unstable (h > 2) region. We note that the solution 
is unstable for small a, but gets more and more stable as a grows, i.e., as 
the original wave packet becomes more and more localized in momentum 
space. But this implies that the wave packets are very diffuse in position 
space, i.e., do not at all look like a classical point particle. In fact, the more 
the quantum nature is apparent, i.e., the larger the uncertainty in position, 
the better the stability of  the Gaussian solution. We conclude that, in accor- 
dance with intuition, the self-consistent solutions of the classical billiard 
problem of, e.g., Novikov (1989) in this quantum mechanical framework 
(localized wave packets) are unstable. 

3. P L A N E  WAVE S O L U T I O N S  IN A YUKAWA P O T E N T I A L  

As one further illustration of  the method, we consider the case where 
the incoming wave is a plane wave 

Oi(x, t) = Ne -ih°'x 

Furthermore, we choose to deal with Yukawa interactions represented by 
the potential 

El. t 
V(r) = - -  e -~r (31) 

r 
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Fig. 3. The generalized Lyapunov exponent as a functional of the Gaussian solution, i.e., of 
a and of the momentum IIk'll. (a) For normed states ck, and (b) for unnormed states. 

Now we proceed by going through the same steps as in the beginning of 
Section 2 [equations ( 1)-(6)]. The Fourier coefficient ak then becomes propor- 
tional to a delta function, ak oc 8(k - ko), and the integrals simplify 
immensely. 4 We obtain for the scattering kernel 

oc In l y  - (k') 2 + Itko + P + ql l(2~ - Ilk0 + P + qll) 
(k') 2 - Ilk0 + P + qlt (2p-~ Ilk0 + P + ~ (32) 

This kernel is plotted as a function ofk'/IX and Ilk0 + P + qll/P~ in Fig. 4. Note 
the rather wild behavior of the function, which in turn makes it impossible to 

4The integrals diverge for any unscreened power law potential. Hence the only regularized 
version of a Coulomb potential which makes the integrals converge will have to include the 
convergence factor exp(-Ixr). This is in contrast with the Gaussian case treated earlier, where 
power-law potentials were quite sufficient except in the case e = 0. 
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solve the self-consistency condition by numerical methods. We have not been 
able to find an analytical solution either. 

4. DISCUSSION AND CONCLUSION 

The first thing to do is to inspect some of  the simplifications and 
assumptions made in order to enable us to find an exact solution to the 
problem. 

One should first of  all notice that we did not use any knowledge of  the 
wormhole, nor did we specify where the interactions take place; this just has 
to be sufficiently (depending on the size of  the wormhole) far away from it, 
where space-time is flat. Only the momenta of the packets were specified, 
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Fig. 4. The scattering kernel X~',q for the case where the incoming state @i is a plane wave 
and the potential is a Yukawa one. (a) Surface plot of  the kernel as function of X = k ' l ~  and 
Y = Ilko + P + qll/0- for fixed value of ko. (b) Contour plot representation of (a). ko is the 
wave number of  the incoming plane wave and tJ- is the mass of  the boson exchanged during 
the Yukawa interaction V ( r )  ~ r -~ exp( - I t r ) .  

and hence their location is indeterminate--the wormhole simply effectively 
introduces a new (self) interaction. 

We ignored any effect the traversal of the wormhole might have on the 
wave packet except for a possible shift in momentum. In particular, we left 
the diverging-lens effect (Kim and Thorne, 1991) out of consideration as 
well as the scattering of the wave upon the mouths. This does not seem to 
us to alter the conclusions of this paper, because the resulting smaller ampli- 
tude, and consequently smaller scattering, could be compensated by changing 
the geometry of the problem, i.e., by changing the distance between the 'out- 
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Fig. 4. Continued. 

mouth' and the region where scattering occurs. Also, of course, the assumption 
that the wave packets are small as compared to the wormhole is essential to 
the calculations. 

We have also ignored the possibility of the wave packet going through 
the wormhole more than once and therefore getting a larger shift in time (but 
with smaller amplitude of the shifted wave, due to the diverging lens effect), 
because this would just alter the region in which the scattering occurs, an 
effect which could be compensated again by changing the geometry appropri- 
ately. By the same token, we left out of consideration the possibility of writing 
the wave after scattering as a superposition of waves that have traversed the 
wormhole a different number of times. This problem probably could be 
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treated in a second-quantized version of the above model, but could also be 
seen as just going to higher orders in the perturbation expansion and probably 
would not change much--i t  should be equivalent to a proper path-integration 
approach with a suitable highly nontrivial measure, taking only self-consistent 
solutions into account. 

Thus we almost completely ignored the wormhole, which was why we 
could use a Hamiltonian formulation. We have only included the time-machine 
effect of the wormhole, and this in a rather indirect manner, through an 
effective potential and hence through an effective equation of motion. This 
equation of motion turned out to be essentially the nonlinear SchrOdinger 
equation. 

We derived a general, closed equation expressing the requirement of 
self-consistency. This equation could be solved exactly only in the case where 
the Fourier coefficients of the wave packet after scattering, i.e., the part of 
the wave packet traveling on the closed timelike curve, has the form Ck' = 
bo exp(-e~k'Z). If the solution was normalized, we found only one possible 
value of the width of the incoming wave packet and that the corresponding 
solution was unstable in large parts of parameter space, so only fine tuning 
of initial conditions could render the physics self-consistent in these parts of 
parameter space. This need for fine tuning springs from the restrictions on 
the form of the wave packet. If one threw away this requirement, the need 
for fine tuning, i.e., the restrictions imposed upon the initial conditions, would 
in all likelihood become very much less severe. On the other hand, this form 
requirement was essential for a semiclassical picture of "billiard balls" self- 
interacting due to the presence of a time machine. 

We were not able to find the (density of) solutions (in parameter space) 
in the general case where the wave packet traveling on the closed timelike 
curve has the form ck' = f ( k ' )  exp(-ak'2), but intuitively it seems that if 
not already constrained, one could press the need for some fine tuning by 
considering the case where the wave packet is large compared with the hole 
or the case of strong coupling because the form of the wave packet would 
then be more drastically disrupted. This latter remark also applies to the 
case wlaere scattering of the wave packet on the (perturbation of space-time 
consisting of the) 'in-mouth' is included. 

APPENDIX 

Here we give some technical details about the calculations in the first 
section. The kernel is 

= 2/~"rr3B(~, 1 - -  ~-a(k ' )2+c' t  (l"tl't'~ Xpk'q ~J~ '0W '~ J 
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Introduce 

p+__q 
p : -  ~ (A1) 

and note that we can always take b = 0 in the original wave packet by a 
suitable choice of coordinates. The expression for the scattering kernel ~-pkq 
above then splits into a Gaussian of p+ and a modified Bessel function of 
p_. The integrations over d2p d2q simplify if we perform the rotation onto 
p .  instead. Having done that, we Taylor expand the wave packet 

f (p)  = ~ b,p" 
n=0 

where by p~ we mean 

p~ = (p~ + p~ + 2p+p_ cos 0) "n (A2) 

We change to polar coordinates and note that only the angle 0 between p÷ 
and p_ appears. Thus we carry out the integration over the angle 0_ and 
put 0÷ = 0, where 0+ is defined by d2p+_ = p±dp._dO±, i.e., we make 
the substitution 

d2p d:q = d2p+ d2p_ = 21rp+p_ dp+ dp_ dO (A3) 

The angular integration can be carried out using (Gradshteyn and Ryzhik, 
1980) 

(? ( ° )  
- " 2 I / '4  (a + b cos 0)rod0 = 2"rr(a 2 - b2)~4P~,~ (a 2 _ b ) - (A4) 

where a = p2 + p2_ and b = 2p+p_ and P ~  is a Legendre polynomial. This 
gives equation (13). 

With only even powers (or only odd powers) of the momenta appearing 
in equation (13), we can use (Gradshteyn and Ryzhik, 1980) 

(i (2 e_O.~.lo(bx)x, , dr _ F((n + 1)/2) b 2 
2a(n+ i)/2 ~ , 1; 

f(n - 1)" ('n'~ |n 
fl  ~ ~ ~---~(~a)-TU ~ a  ] neven  

e -°-'" x" dr  = [ ( (n  - 1)/2)! 

2a(,,+lv 2 n odd 

f~ r cosk0 dO = 2(1 + (-l)k) 'rr (k - 1)!! 
k!! 
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to simplify equation (13), giving the self-consistency requirement the form 
of equation (15). Mixed terms like p2,qZ.,+i will give a vanishing contribution 
due to their parity; the kernel is clearly invariant under reflections in momen- 
tum space (it only depends on the length of various combinations of p, q, 
and k') and hence has even parity, but mixed terms like p2,,q2,,,+l have odd 

1~ /-, n2n~2m+l ~r p,q parity; thus the integrand u2,,v2,,,+lp "t "~k' has odd parity. The domain 
over which we integrate is symmetric--it is just fiat, Euclidean momentum 
space--whereby the integral of this mixed term vanishes. This means that 
also the right-hand side of the self-consistency requirement (15) splits into 
two sums, one containing only b2,,b2,, and the other only the combination 
b2,,+ I b2,,,+ I. 
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